ON THE SOLUTION OF CERTAIN CONTACT PROBLEMS OF THE THEORY OF ELASTICITY

(K RESHENIIU NEKOTORYKH KONTAKTNYKH ZADACH TEORII UPRUGOSTI)

PMM Vol.27, No.5. 1963, pp. 970-972
V. M. ALEKSANDROV
(Rostov on Don)
(Received January 3, 1963)

The following contact problems of the theory of elasticity are considered: (1) the problem of the effect of a stamp on an elastic strip of thickness h lying frictionless on a rigid base; (2) the problem of the effect of a stamp on an elastic strip of thickness h attached rigidly to a rigid base; (3) the axisymmetric problem of the interaction of a belt with an elastic cylinder of radius R.

These problems can be reduced, by operational calculus methods, to the solution of the following integral equation:

$$
\begin{equation*}
\int_{-a}^{a} q(\xi) K\left(\frac{x-\xi}{l}\right) d \xi=\pi \Delta \delta(x), \quad|x| \leqslant a, \quad \Delta=\frac{E}{2\left(1-\sigma^{2}\right)} \tag{1}
\end{equation*}
$$

Here a is half the length of the line of contact; $q(\xi)$ the contact pressure; $\delta(x)$ the setting of the strip or cylinder surface in the contact domain; $l=h$ or $l=R$. The kernel $K(k)$ of equation (1) has the form

$$
\begin{equation*}
K(k)=\int_{0}^{\infty} \frac{L(u)}{u} \cos k u d u, \quad \text { where } L(u) \rightarrow 1 \quad \text { as } \quad u \rightarrow \infty \tag{2}
\end{equation*}
$$

For values of the parameter $\lambda=l / a>1$, there are a number of methods which can be used to obtain approximate solutions of equations (1) of problems (1) to (3) with sufficient simplicity. However, for $\lambda<1$, one of these methods becomes not at all applicable, and the others require more and more awkard transformations and calculations to obtain solutions of the required accuracy as λ diminishes. The only
relief here is that for very small values of λ a very simple degenerate expression of the form

$$
\begin{equation*}
q(x)=\frac{\Delta \delta(x)}{A l}, \quad A=\lim _{u \rightarrow 0} \frac{L(u)}{u} \tag{3}
\end{equation*}
$$

can be found for all the above-mentioned problems.
As will be established below, this solution yields practically exact results for $\lambda \leqslant 1.5$. It should just be noted that the degenerate solution (3) has an essential disadvantage. If $\delta^{\prime}(x)$ satisfies the Holder condition, then for any value of $\lambda \in(0, \infty)$ the solution of (1) for problems (1) to (3) should have a singularity of the form $\left(a^{2}-x^{2}\right)^{-1 / 2}$, as can be shown. Hence it follows that the solution (3) for values of x close to $k \pm a$ will yield erroneous results.

Starting from the above, let us set ourselves the task of obtaining a practical, convenient and approximate solution of equation (1) suitable for the values $0<\lambda \leqslant 1$, and having a singularity of the form $\left(a^{2}-x^{2}\right)^{-1 / 2}$.

Keeping in mind the results of Krein [1], let us try to obtain the mentioned solution of (1) for the case $\delta(x)=\delta=$ const. This solution should evidently have the form

$$
\begin{equation*}
q(x)=\frac{\Delta \delta}{A l}\left[1+f_{+}(x)+f_{-}(x)\right] \tag{4}
\end{equation*}
$$

Where the functions f_{+}and f_{-}have the following properties:
the function $f_{+}(x)$ has a singularity of the form $(a-x)^{-1 / 2}$ and tends rapidly to zero for $x<a$;
the function $f_{-}(x)$ has a singularity of the form $(a+x)^{-1 / 2}$ and tends rapidly to zero for $x^{>}-a$.

Thus the problem has been reduced to finding the functions f_{+}and f_{-} with the mentioned properties.

Let us represent (1) in other variables

$$
\begin{equation*}
\int_{0}^{2 / \lambda} q(l \tau-a) K(t-\tau) d \tau=\frac{\pi \Delta \delta}{l} \quad\left(t=\frac{a 4 x}{l}, \tau=\frac{a+\xi}{l}\right) \tag{5}
\end{equation*}
$$

Let us rewrite (5) as

$$
\begin{equation*}
\int_{0}^{\infty} q(l \tau-a) K(t-\tau) d \tau=\frac{\pi \Delta \delta}{l}+\int_{2 / \lambda}^{\infty} q(l \tau-a) K(t-\tau) d \tau \tag{6}
\end{equation*}
$$

Solving the integral equation (6) for small values of λ by successive approximations, it is possible to be limited, for subsequent accuracy,
to the zero approximation which is determined from the equation

$$
\begin{equation*}
\int_{0}^{\infty} q(l \tau-a) K(t-\tau) d \tau=\frac{\pi \Delta \delta}{l} \tag{7}
\end{equation*}
$$

The integral equation (7) is the equation of the problem of the effect of a semi-infinite stamp $(-a \leqslant x<\infty)$ on an elastic strip, or the problem of the interaction of a semi-infinite belt $(-a \leqslant x<\infty)$ with an elastic cylinder. This indicates that for small λ the influence of the right end of the stamp or belt on the state of stress under the left end (and conversely) can be neglected.

Therefore, the contact pressure distribution $q(x)$ under the left end is described well enough by the solution of (7), which evidently has the form

$$
\begin{equation*}
q(x)=\frac{\Delta \delta}{A l}\left[14 f_{-}(x)\right] \tag{8}
\end{equation*}
$$

The solution of (7) can be obtained in closed form by the Wiener-Hopf method and, therefore, the function $f_{-}(x)$ can be determined. The function $f_{+}(x)$ can also be found in an analogous manner. Hence, a solution of the form (4) of equations (1), which is valid for small values of λ, can always be constructed.

In order to obtain a solution suitable for practical calculations, let us proceed as follows. Let us introduce the function [2]

$$
\begin{equation*}
\Lambda(u)=u^{-1} L(u) \sqrt{u^{2}} \ddagger A^{-2} \tag{9}
\end{equation*}
$$

This function has the following properties:

$$
\Lambda(u) \rightarrow 1 \text { as } u \rightarrow \infty \text { and } u \rightarrow 0
$$

Moreover, it can easily be shown by direct calculations that the function $\Lambda(u)$ deviates by not more than 20 per cent from 1 for all values of $u \in(0, \infty)$ for the problems (1), (2) and (3) listed above, so that it is possible to put $\Lambda(u) \equiv 1$ with sufficient accuracy for the sequel (the error in the final results does not exceed 6 per cent for the most unfavorable cases). Then the kernel of (7) will be

$$
\begin{equation*}
K(k)=\int_{0}^{\infty} \frac{\cos k u d u}{\sqrt{u^{2} \nmid A^{-2}}} \tag{10}
\end{equation*}
$$

and its solution is given by the formula $(\Phi(x)$ is the probability integral)

$$
\begin{equation*}
q(x)=\frac{\Delta \delta}{A l}\left[\Phi\left(\sqrt{\left.\frac{(2(a+x)}{A l}\right)^{1 / 2}}+\frac{1}{\sqrt{\pi}}\left(\frac{a+x}{A l}\right)^{-1 / 2} \exp \frac{-(a+x)}{A l}\right]\right. \tag{11}
\end{equation*}
$$

Now, the solution of (1) of type (4) can easily be obtained without difficulty and we represent it in a form convenient for calculations

$$
\begin{gather*}
q(x)-\frac{\Delta \delta}{\sqrt{a^{2}-x^{2}}} \omega\left(\frac{x}{a}\right) \\
\omega\left(\frac{x}{a}\right)=[\Phi(\alpha \sqrt{2}) \psi \Phi(\beta \sqrt{2})-1] \alpha \beta 4 \frac{1}{\sqrt{\pi}}\left(\beta e^{-\alpha^{2}}+\alpha e^{-\beta^{2}}\right) \\
\alpha=\sqrt{\frac{a+x}{A l}, \quad \beta=\sqrt{\frac{a-x}{A l}}} \tag{12}
\end{gather*}
$$

We obtain the quantity

$$
\begin{gather*}
P=\int_{-a}^{a} q(x) d x=\pi \Delta \delta x \\
\varkappa=\frac{D^{2}}{\pi}\left[\left(2+D^{-2}\right) \Phi(D)+\frac{2}{\sqrt{\pi}} D^{-1} e^{-D^{2}}-1\right], \quad D=\sqrt{\frac{2}{A \lambda}} \tag{13}
\end{gather*}
$$

Calculations carried out showed convincingly that the solution obtained in (12) and (13) yields

TABLE 1.

Problems		1)	2)	3)	
λ	1	0.5	0.25	1	1
x°	1.50	2.85	5.41	1.76	1.86
x	1.47	2.84	5.41	1.79	1.89

Now, on the basis of (13), let us determine the limits of applicability of the degenerate solution (3) which are mentioned in [3, 4] with a certain margin. Starting from the relation

$$
\frac{P-p^{*}}{P^{*}} 100 \% \leqslant 5 \% \quad\left(P^{*}=D^{2} \Delta \delta\right)
$$

or

$$
(2+D)^{-2} \Phi(D)+\frac{2}{\sqrt{\pi}} D^{-1} e^{-D^{2}} \leqslant 2.05
$$ practically true results for $\lambda \leqslant 1$, where the accuracy rises as λ diminishes. The results of certain calculations are presented in Table 1. Given for comparison in the table are values of the quantity k° calculated by methods from $[3,4]$ (for problems (2) and (3) the calculations were carried out for $\sigma=0.3$).

The author is deeply grateful to I.I. Vorovich and Iu. I. Cherskii for remarks made during discussions of this work.

BIBL IOGRAPHY

1. Krein, M. G., Ob odnom novom metode resheniia lineinykh integral'nykh uravnenii pervogo i vtorogo roda (On a new method of solving linear integral equations of the first and second kind). Dokl. Akad. Nauk SSSR, Vol. 100, No. 3, 1955.
2. Koiter, W.T., Approximate solution of Wiener-Hopf type integral equations with applications. Proc. Acad. Sci. Amst., B57, 558-579, 1954.
3. Aleksandrov, V.M., O priblizhennom reshenii odnogo tipa integral' nykh uravnenii (On the approximate solution of a type of integral equations). $P M M$ Vol. 26, No. 5, 1962.
4. Aleksandrov, V.M., Osesimmetrichnaia kontaktnaia zadacha dlia uprugogo beskonechnogo tsilindra (Axisymmetric contact problem for an elastic infinite cylinder). Izv. Akad. Nauk SSSR, OTN, Mekh. i Mashinostr., No. 5, 1962.
